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Comprehensive monitoring of biodiversity to direct conservation action is foundational to addressing the
ongoing biodiversity crisis. As integrative monitoring programs increasingly come online in response to
multilateral biodiversity agreements, establishing best practices for optimal design is critical. Appropriately
selecting monitoring locations is fundamental for producing robust biodiversity data. Despite extensive
development of algorithms to systematically select sites, practical discussions of which algorithm is optimal
for different monitoring settings is largely absent from the literature. Here, we benchmark the performance of
four common selection algorithms, outline the characteristics of the suite of algorithms suitable for ecological
monitoring design, and offer recommendations for their best use under different constraints on network design.
While all algorithms outperformed simple random samples, performance differences were negligible between
algorithms. We recommend instead that practitioners choose algorithms based on feature availability, which
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varies greatly between algorithms.

Monitoring changes in biodiversity through time and across space
is fundamental for identifying areas of high conservation value amidst
the ongoing sixth mass extinction. Historically, biodiversity data has
been dominated by heterogeneous non-probability samples, often col-
lected for snapshots of time using bespoke protocols with low replica-
tion (Boyd et al., 2023). Synthesis of this data for broad-scale assess-
ment of biodiversity suffers from low power, severe data biases (Chap-
man et al., 2024), and an inability to detect existing trends (Boénnec
et al., 2024; Johnson et al., 2024; White, 2019). With this context, es-
tablishment of standardized monitoring protocols across the globe has
been a major focus of multilateral biodiversity agreements (Gonzalez
and Londofio, 2022; Griffith et al., 2024).

Monitoring networks that produce robust data for statistical in-
ference are designed under a pre-established statistical framework
(Benedetti et al., 2017; Dumelle et al., 2022; Williams and Brown,
2019). In the context of biodiversity monitoring, a network, or biodi-
versity observation network, refers to a system of sites where identical
samples are taken following standardized protocols. At its most basic,
the network design process involves (i) defining a sample frame, (ii)
identifying potential sampling sites, and (iii) applying a site selection
algorithm to identify final sample points. Site selection algorithms
select sample sites following random sampling principles while ac-
counting for site locations to identify an optimally spatially balanced
sample. Many algorithms support additional features, including in-
corporation of site level characteristics, systematic over-samples, and

stratification to further tailor the network design (Kermorvant et al.,
2019; Stevens and Olsen, 2004; Robertson et al., 2024). Regardless of
the specifics of each algorithm, sets of sampling points recommended
in this way should offer a fair representation of the statistical structure
of the data used to select them, and therefore adequate information
about the status and trends of biodiversity in the region.

Despite significant recent investment in tools for designing and
implementing monitoring programs, discussions around choosing the
appropriate site selection algorithm have been largely restricted to
theoretical differences between algorithms or benchmarking of perfor-
mance using a limited set of metrics rather than practical considera-
tions (Benedetti, 2015; Benedetti et al., 2017; Kermorvant et al., 2019).
This is despite significant differences in computational performance,
available features, and ongoing development of better-performing al-
gorithms. Previous evaluations largely focus on spatial balance alone
rather than a network’s ability to meet the goals of a monitoring project
(e.g. Di Biase et al. (2024); but see Convertino et al. (2015) for an exam-
ple of ecological performance metrics). In biodiversity monitoring this
may include for example how completely the full species richness of
the region is sampled, how well the network captures landscape hetero-
geneity, or the ability of a network to detect trends through time. There
is therefore a critical need for review of site selection algorithms, the
features they provide, and how they perform for ecologically relevant
metrics.
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Table 1
Available features and implementation for spatial sampling design algorithms.
Algorithm Abbreviation Stratification Auxiliary variables Legacy sites Master sample R package
Generalized random tessellation stratified GRTS Yes No Yes Yes spsurvey, Sdraw
Cube sampling Cube Yes Yes No No BalancedSampling, sampling
Local pivotal method LPM No Yes No No BalancedSampling
Spatially correlated Poisson sampling SCPS No Yes No No BalancedSampling
Balanced acceptance sampling BAS Yes No Yes Yes Sdraw, spbal
Halton iterative partitioning HIP No No No Yes Sdraw, spbal
Dynamic assignment sampling DAS No Yes No Yes

Here, we outline the feature and performance considerations for
site selection algorithms using the Canadian province of Quebec as a
case study. We describe a typical process for designing a monitoring
network, outline the characteristics of common and more recently
developed site selection algorithms for biodiversity monitoring appli-
cations, and simulate that process for common algorithms to evaluate
performance for multiple management-relevant goals. Based on this
simulation study, we offer some specific guidance regarding the se-
lection and use of site selection algorithms for integrative biodiversity
monitoring (Convention on Biolgoical Diversity, 2022).

1. Methods
1.1. Algorithm descriptions

Algorithms vary widely in their approach to balancing samples
across space and site characteristics. Below we describe the site se-
lection process for algorithms, their features, and how they might be
implemented in the R programming language. We discuss stratification,
incorporation of site-level data in the form of auxiliary variables, and
inclusion of legacy sites to support iterative network development. We
also discuss whether or not the algorithm supports master sampling
defined as systematic oversampling to support dynamic sample sizes.

The first four algorithms are the most widely accepted and therefore
included in our performance benchmarking simulations (Generalized
Random Tessellation Stratified, Cube Sampling, Spatially Correlated
Poisson Sampling, Local Pivotal Method), with three additional al-
gorithms that hold promise but were not included in benchmarking
(Balanced Acceptance Sampling, Halton Iterative Partitioning, Dynamic
Sampling Assignment). Algorithm characteristics are also summarized
in Table 1.

Generalized Random Tessellation Stratified (GRTS): This algorithm
was developed by the U.S. Environmental Protection Agency for use
in the National Environmental Monitoring and Assessment Program
(Stevens and Olsen, 2004). It uses a hierarchical sampling approach
whereby the study extent is hierarchically subdivided by grids until
each cell contains only one sample unit. Cells are then ordered on a
line by their hierarchical “address”, the line is split into a number
of equally sized units equal to the sample size and a sample point is
randomly selected from each unit (Benedetti et al., 2017). Rather than
incorporating auxiliary data directly into the site selection process, they
can be qualitatively assessed by the user to differentially weight site
selection or to define stratification. As this is a more subjective process
and not directly comparable to auxiliary inclusion for other algorithms,
we did not included GRTS in our auxiliary data simulation scenarios.
GRTS is one of two algorithms we discuss that supports legacy site
inclusion (Foster et al., 2017). We implemented this algorithm using
the grts function in the R package spsurvey.

Cube Sampling: The cube methods seeks to select a sample that
balances across auxiliary variables while maintaining the inclusion
probabilities of constituent sites (Chauvet and Tillé, 2006; Tillé, 2011).
It conceptualizes each potential site as a vertex of a hypercube in an N-
dimensional space, RV . The vector of inclusion probabilities is a vector
inside the unit cube, and an affine subspace (hyperplane) defines the set
of possible solutions balancing across auxiliary variables. The algorithm

therefore seeks to find a point on the linear subspace that satisfies the
inclusion probabilities. Inclusion of auxiliary data is fundamental to this
approach and it can also handle stratification by selecting samples with
an exact sample size within stratum while still maintaining balance for
the network of sites as a whole (Chauvet, 2009). We implemented this
algorithm with the R functions cube and cubestratified in the R
package BalancedSampling.

Spatially Correlated Poisson Sampling (SCPS): This algorithm uses a
sampler that visits sites one by one, with visit probability initially given
by inclusion probability of sites (Grafstrom, 2012). Subsequent sites are
visited after calculating a penalization based on distance to previously
visited sites. Auxiliary variable information can be incorporated along-
side spatial distance to target optimal spread across variables (Zhao
and Grafstrom, 2020). Since SCPS is designed to account for differences
between site characteristics without stratification we use two different
stratification approaches for benchmarking. First, the naive approach
which simply treats stratification levels as independent samples, and
second, an unequal probability sample which enforces within-strata
sample size by setting the total inclusion probability for candidate
sites in a strata to the desired sample size for that strata (Benedetti,
2015). In benchmarking results below we present the second imple-
mentation alongside other algorithms (referred to simply by SCPS), and
discuss the comparison between the two implementations separately.
We implemented SCPS using the R function SCPS in the R package
BalancedSampling.

Local Pivotal Method (LPM): This algorithm selects sites based on
their euclidean distance in the auxiliary sample space. Sites are selected
to maximize the distance between points and therefore coverage of the
sample space (Grafstrom et al., 2012) . We implemented LPM using two
different algorithms: LPM1, which creates the optimally balanced sam-
ple, and LPM2 which selects a sample more efficiently (Benedetti et al.,
2017). Algorithms performed almost identically, so we report results for
only LPM2 here. LPM follows the same philosophy of SCPS in balancing
across characteristics without strata, so we also simulated naive and
unequal probability stratification scenarios for LPM1 and LPM2. As
with SCPS, we include the unequal probability implementation when
comparing to other algorithms, and discuss the comparison between
naive and unequal implementations separately. These algorithms were
implemented using functions 1pml and 1lpm2 from the R package
Balanced Sampling.

Balanced Acceptance Sampling (BAS): BAS selects points based on
a random-start Halton sequence, which gives a quasi-random number
sequence (Robertson et al., 2013). The multi-dimensional study space,
which could be for example a two-dimensional space defining latitude
and longitude, is scaled and enclosed by a unit box of the same
dimensions as the study space. Points are then assigned an element of
the Halton sequence based on their location in the multi-dimensional
box and selected for the final sample set based on the ordering of the
sequence. This algorithm does not allow for the inclusion of auxiliary
data beyond the ad hoc modification of inclusion probabilities based
on site characteristics however it does support the inclusion of legacy
sites.

Halton Iterative Partitioning (HIP): This algorithm builds on the
concepts of BAS, but rather than selecting points from the space of
the multi-dimensional box it iteratively partitions the box and selects
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Fig. 1. Conceptual figure depicting the monitoring network design and evaluation process, wherein (1) a set of candidate points are identified, each with their
own species and environmental characteristics, (2) designs selecting from the candidate points are generated for each algorithm, scenario, and sample size, (3)
those designs are evaluated using the three performance metrics depicted on the right, and (4) performance curves across sample size are then generated for
each algorithm and design scenario. Jensen—Shannon divergence compares the complete environmental space to the sampled space, spatial balance determines
the distribution of samples across Voronoi polygons, and species coverages identifies the number of species sampled based on their range.

points from the nested boxes based on the Halton sequence order-
ing (Robertson et al., 2018). It has been recently expanded from its
original implementation to facilitate master sampling (Robertson et al.,
2022). It does not incorporate stratification or the inclusion of auxiliary
variables.

Dynamic Assignment Sampling (DAS): DAS was designed to facilitate
the inclusion of auxiliary variables and master sampling in a single
algorithm (Robertson et al., 2024). It draws a balanced sample from
the auxiliary sample space sequentially as units are iteratively assigned
to a candidate set. A candidate set is then chosen as the core set of
seed sites before a sufficient number of sites are assigned to reach the
desired sample size. DAS has not yet been implemented in open source
software at the time of writing.

1.2. Design process

Here we give a general outline for the steps in the simulated
network design, with details of data and simulation methods to follow.
The design process is depicted graphically in Fig. 1.

Identify Sample Frame: We chose the Canadian province of Quebec as
our sample frame of interest as a landscape with a significant latitudi-
nal gradient in environmental variables and biodiversity. It therefore
provides a good test of the algorithm’s performance across a highly
heterogeneous landscape with strong spatial structuring.

Candidate Points: We identified a set of candidate points using a
hexagonal sampling algorithm implemented by the R function st_
sample from the R package sf. This algorithm establishes a grid
of evenly spaced sample points across the sampling extent while ac-
counting for irregularity in sample extent boundaries. The initial grid
had 10000 candidate points evenly spaced across the province of
Quebec, with a euclidean distance between points of ~13 km. We
excluded points on water or ice as identified by the land cover data
described below. The final candidate set had 9992 potential sites. For
simulations stratified by ecoregion, we excluded ecoregions with an
insignificant area in Quebec, defined by 10 or fewer candidate points
in the ecoregion.

Auxiliary Variables: For each potential sample site in the candidate
set we assembled a suite of auxiliary variables describing the site
characteristics from existing open source environmental data. Data
included land cover, climatic variables, and site topography. To account
for covariation in variables, we performed whitening on the matrix
of auxiliary variables using the function whiten from the R package
whitening. Whitening transforms the sample matrix to a matrix of
orthogonal, and therefore independent, variables with unit variance
and zero covariance (Kessy et al., 2018).

Identifying Sample Points: For each algorithm of interest we simulated
a suite of design scenarios by sampling from the set of candidate points
under different conditions. We included a simple random sample as
a baseline for performance (Kermorvant et al., 2019) and evaluated
the following algorithms: Generalized Random Tessellation Stratified
(GRTS), Cube sampling, Spatial Correlated Poisson Sampling (SCPS),
and two implementations of the Local Pivotal Method (LPM1, LPM2).
For each algorithm we sampled 100 replicates for each sample size
ranging from 10 to 545 on an approximate log scale (10, 15, 22,
33, 49, 74, 110, 164, 245, 365, 545). This process was executed for
each algorithm for four different sampling scenarios: unstratified (equal
probability) and stratified by ecoregion, with and without auxiliary
environmental data. For stratified samples, the complete monitoring
network sample size was allocated across ecoregion strata proportional
to the ecoregion’s area in the study extent.

Evaluation of Algorithm Performance: Algorithm performance was
evaluated based on three complementary metrics representing different
goals for monitoring programs. Spatial balance, or the variance in site
inclusion probabilities across space; species coverage, or how compre-
hensively the network samples existing species on the landscape; and
environmental coverage, or how balanced sampling is across combina-
tions of environmental variables. Species and environmental coverage
were averaged across simulation replicates and spatial balance was
measured as the variance across all simulation metrics. See the Algo-
rithm Evaluation Metrics section below for details on how metrics were
calculated.
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Fig. 2. Example designs for unstratified (A-C) and stratified (D-F) monitoring network designs for Cube (column 1), Local Pivitol Method (column 2), and
Spatially Correlated Poisson Sampling (column 3) algorithms, all with a sample size of 110. Unstratified designs are show with NDVI, stratified designs are shown

with ecoregion boundaries.

1.3. Data

Land cover data for candidate point exclusion and auxiliary vari-
ables was obtained from the ESA WorldCover dataset for 2020 (Zanaga
et al., 2021). Additional auxiliary variables included slope and eleva-
tion from the Earthenv topography data (Amatulli et al., 2018), and
all 19 CHELSA-BIOCLIM+ variables (Brun et al., 2022). Ecoregions
for stratification simulations were taken from the WWF defined ecore-
gions (Olson et al., 2001). We used IUCN range maps for mammals
to evaluate biodiversity coverage of the simulated network and in-
cluded all mammals whose range intersects with Quebec. While range
maps have well discussed inaccuracies and may overestimate species
occurrence (Hurlbert and Jetz, 2007), those departures from ecological
reality are unlikely to impact algorithms differently, but rather lead
to early sampling curve saturation for all algorithms similarly. We
therefore feel comfortable using them for species sampling evaluation
as the best available dataset of comprehensive mammal occurrence for
the region.

1.4. Algorithm evaluation metrics

We evaluated algorithm performance using three metrics that mea-
sure complimentary goals of biodiversity monitoring networks: spatial
balance, species coverage, and environmental coverage. These metrics
underpin a network’s ability to detect unbiased trends in populations, a
common monitoring goal, by measuring how comprehensively spatial,
environmental, and species processes are sampled. The power to detect
a true trend for a population beyond these factors is a function of
sample size and the strength of the trend, a process that is depen-
dent on species biology and outside the scope of this paper (Banner
et al.,, 2019; Wood et al., 2019). Spatial balance is the traditional
metric used to assess how a spatial sample is distributed across the
sample area, and describes how inclusion probabilities of individual
points are distributed across Voronoi polygons. We assessed spatial
balance following Benedetti (2015) and Stevens and Olsen (2004) as
the variance in total inclusion probability of points contained in each

Voronoi polygon. Lower spatial balance values imply lower variance
and therefore fewer unsampled regions with much higher or lower
inclusion probabilities of constituent sites, and therefore a better spatial
sample.

Fully sampling across the range of environmental conditions in the
study area ensures samples span available niche space and capture
the relationship between populations and change drivers that may
vary by environmental context. We therefore used environmental cov-
erage as an ecological performance metric, measured by calculating
the Jensen-Shannon divergence (JSD) for the environmental values
represented by a sample network using the function JSD in the R
package philentropy (Drost, 2018). Jensen-Shannon distance was
calculated for each environmental variable, with the JSD for a potential
sampling design calculated as the square root of the mean distance of
all environmental variables. JSD therefore measures how completely
the sample distribution covers the environmental space of the sample
landscape. We assessed species coverage using the IUCN range maps to
compile species checklists for each sample point and the sample extent
as a whole. For ease of interpretation across metrics where higher
values indicate worse performance and lower values indicate better
performance, coverage was quantified as the percent of species in the
landscape not sampled by a given sample monitoring network.

2. Results

Algorithms generally showed very similar performance across met-
rics, despite having visually different samples (Fig. 2), and showed
saturating performance with increasing sample size, particularly for
species and environmental coverage (Fig. 3). Across all metrics and sim-
ulation scenarios algorithms performed better than the simple random
sample. For species and environmental coverage performance differ-
ences were negligible, though LPM, and SCPS consistently performed
better for all metrics. Cube sampling alone showed marked differ-
ence after adding stratification. Surprisingly, including environmental
variables did not change algorithm performance significantly for the
majority of algorithms, with the exception of cube sampling (Fig. 4).
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Fig. 3. Three evaluation metrics for each of the algorithms for all of Quebec and stratified by ecoregion. Y axis is scaled between zero and one, with lower

values indicating better performance for all metrics.

We found that the naive implementation of LPM and SCPS, where
strata were each treated as independent samples, gave significantly
worse performance than the unequal probability approach to stratifi-
cation (Fig. 5). Rather than reaching a saturation point, spatial bal-
ance for the naive implementations increased with increasing samples,
indicating worse balance with larger sample size. This also mani-
fested in species and environmental coverage, where naive implemen-
tations saturated at worse performance than the unequal probability
implementations.

3. Discussion

Appropriately selecting sample locations is critical for generating
robust inference from biodiversity monitoring data. Despite a vari-
ety of existing algorithms for designing a sampling network, and on
going development of available features, discussion around the most
appropriate algorithm for ecological sampling has been limited. We
found the performance differences between most of the best-performing
algorithms to be negligible; this was particularly true for species and
environmental coverage, and robust across study design. This may
simply reflect the fact that ecological processes tend to be correlated to

one another in addition to being spatially auto-correlated (Legendre,
1993). Whereas auto-correlation can be a source of bias by masking
actual trends in biodiversity (Diniz-Filho et al., 2003), it can be a
net positive for the design of biodiversity monitoring networks by
artificially driving algorithms to suggest designs with similar perfor-
mances. With such similar performance across a broad sample frame
with significant gradients in both environment and species variables,
biodiversity monitoring performance appears to be limited more by
the environmental and biogeographic characteristics of the monitoring
region than by the choice of algorithm (we moderate this statement for
specific cases further on).

We found that the ecological performance metrics, environmental
and species coverage, were even less sensitive to algorithm than the
traditional spatial balance metric. Even when spatial balance indicated
relatively poor performance (less optimal distribution of sites in space
relative to their inclusion probabilities), ecological performance metrics
were mostly determined by sample size. Notably, the saturation of
performance for ecological performance metrics was similar across
algorithms. This, again, reinforces the idea that the “best” designs
generated by each algorithm may be equivalent, and that any proba-
bilistic design with sufficient sample size to reach adequate coverage
of ecological characteristics is an appropriate design. Although the
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Fig. 4. Three evaluation metrics for each of the algorithms for all of Quebec and stratified by ecoregion, including only algorithms that can take environmental
data as auxiliary variables. The Y axis is scaled between zero and one, with lower values indicating better performance for all metrics.

monitoring networks got progressively better with more samples, we
observed a clear saturation, suggesting that past this saturation point
adding additional sites does not result in more informative monitoring.

Stratification is a common design approach for strategically re-
ducing variance to improve estimator precision (Williams and Brown,
2019), and our results give important clarification on appropriate
stratification implementation across algorithms. Stratified samples in
non-spatial settings treat strata as fundamentally independent, with
samples drawn from each strata without information from other strata.
In spatial samples, treating strata independently creates boundary ef-
fects as the spatial properties of samples in adjacent strata are not
taken into account. This is the phenomenon captured by our naive
implementation of LPM and SCPS (Fig. 5), where spatial balance per-
forms worse with increasing sample size as the sample frame becomes
more saturated and boundary effects are amplified. Larger samples
therefore perform worse at capturing processes with a spatial com-
ponent. Algorithms that incorporate stratification (GRTS, Cube, BAS;
Table 1) iteratively take into account the samples in neighboring strata
to spatially optimize across the sample frame. Thus, while LPM and
SCPS do not follow stratification principles, the closest equivalent
for applications where stratification is necessary is to enforce sample
sizes for individual stratum via site inclusion probability, allowing the

algorithm to take into account the entire sampling frame. This approach
is demonstrated in our unequal probability implementation.

Our results also support algorithm-specific recommendations for
cube sampling, whose performance increased relative to other algo-
rithms when auxiliary data were used. This algorithm is therefore
unsuitable when there are no readily available information about non-
ecological data at the candidate locations. Although this is a limitation,
the wealth of publicly available high-resolution geospatial data means
that this limitation is unlikely to ever affect the viability of cube sam-
pling as a site selection algorithm. Beyond those specific stratification
and cube sampling use cases, algorithm selection is largely dependent
on the features needed by the user and implementation availability
(Table 1), even more so since no algorithm was able to generate a
monitoring network that saturated with fewer sampled locations.

We benchmarked algorithms for a single case study landscape,
defined by its large extent and strong latitudinal gradient in species
richness, composition, and environmental features. The performance of
some algorithms may respond to changes in the landscape of interest.
For example, highly heterogeneous landscapes may be more com-
prehensively sampled by algorithms that take into account site-level
information; this is particularly likely since fine-scale heterogeneity
can over-rule the effect of auto-correlation (Tardanico and Hovestadt,
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benchmarking in Figs. 2 and 3.

2023), which can reveal additional differences between algorithms.
Similarly, ecosystems in which species distributions are not tightly
tracking the environmental gradient may lead to some algorithms
achieving better performance; we specifically expect that in these cases,
algorithms with good spatial balance may be more apt at capturing
ecological variables. As algorithm equivalence may not be guaranteed
based on these factors for different regions or data sources, we encour-
age future researchers to follow the general structure of this study to
benchmark algorithms for particular problems. Adopting benchmarking
as a necessary step in the design process will be critical for further
exploration of algorithm sensitivity to ecological characteristics. It may
also be particularly useful in tandem with monitoring network power
analyses that assess required sample size to detect phenomena like
population trends, where differences in sample location and not just
sample size may play a role in network power.

The option to produce a master sample is a key distinguish feature of
algorithms with particular relevance to ecological sampling (Robertson
et al.,, 2024). Master sampling creates a systematic oversample (i.e.
recommends more points for inclusion than required), facilitating an

increase or decrease in the sample size dynamically while maintaining
the probabilistic sampling frame (van Dam-Bates et al., 2018). This
approach facilitates modifications to the complete set of sampling loca-
tions due to common logistical constraints such as site inaccessibility,
changing landownership, or budgetary constraints. Of the algorithms
we benchmarked only GRTS can create a master sample, however it is
increasingly recognized as a critical feature for robust implementation
of monitoring designs. This is reflected in recent algorithm develop-
ment with BAS, HIP, and DAS all supporting master sampling (Table
1).

Comprehensive understanding of available metrics, their charac-
teristics, and performance are critical for the ongoing investment in
expanding biodiversity observation networks. Limited differences in
algorithm performance indicate that users should give more importance
to the features of each algorithm when selecting a subset to benchmark
against for a specific region of interest. All the algorithms we bench-
marked were able to outperform simple random sampling, reinforcing
their necessary use in the monitoring design process to generate ro-
bust biodiversity monitoring networks over naive or expert-informed
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sampling alternatives. Although all but one of these algorithms had
available implementations, they used very different interfaces and pro-
gramming conventions. The development of a unified interface for
sampling is a natural next step in facilitating sampling algorithm uptake
for addressing multilateral biodiversity monitoring agreements.
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