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Abstract
1.	 Can machine learning help us make better decisions about a changing planet? 

In this paper, we illustrate and discuss the potential of a promising corner of 
machine learning known as deep reinforcement learning (RL) to help tackle the 
most challenging conservation decision problems. We provide a conceptual and 
technical introduction to deep RL as well as annotated code so that researchers 
can adopt, evaluate and extend these approaches.

2.	 RL explicitly focuses on designing an agent who interacts with an environment 
that is dynamic and uncertain. Deep RL is the subfield of RL that incorporates 
deep neural networks into the agent. We train deep RL agents to solve sequen-
tial decision-making problems in setting fisheries quotas and managing ecologi-
cal tipping points.

3.	 We show that a deep RL agent is able to learn a nearly optimal solution for the 
fisheries management problem. For the tipping point problem, we show that a 
deep RL agent can outperform a sensible rule-of-thumb strategy.

4.	 Our results demonstrate that deep RL has the potential to solve challenging de-
cision problems in conservation. While this potential may be compelling, the 
challenges involved in successfully deploying RL-based management to realistic 
scenarios are formidable—the required expertise and computational cost may 
place these applications beyond the reach of all but large, international technol-
ogy firms. Ecologists must establish a better understanding of how these algo-
rithms work and fail if we are to realize this potential and avoid the pitfalls such 
a transition would bring. We ultimately set forth a research framework based 
on well-posed, public challenges so that ecologists and computer scientists can 
collaborate towards solving hard decision-making problems in conservation.
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1  |  INTRODUC TION

Advances in both available data and computing power are opening 
the door for machine learning (ML) to play a greater role in address-
ing some of our planet's most pressing environmental problems. 
But will ML approaches really help us tackle our most pressing 
environmental problems? From the growing frequency and inten-
sity of wildfire (Moritz et al.,  2014), to over-exploited fisheries 
(Worm et al., 2006) and declining biodiversity (Dirzo et al., 2014), 
to emergent zoonotic pandemics (Dobson et al., 2020), the diver-
sity and scope of environmental problems are unprecedented. 
Applications of ML in ecology have to-date illustrated the promise 
of two methods: supervised learning (Joseph, 2020) and unsuper-
vised learning (Valletta et al., 2017). However, the fields of ecology 
and conservation have largely overlooked the third and possibly 
most promising approach in the ML triad: reinforcement learning 
(RL). Three features distinguish RL from other ML methods in ways 
that are particularly well suited to addressing issues of global eco-
logical change:

1.	 RL is explicitly focused on the task of selecting actions in an 
uncertain and changing environment to maximize some objective.

2.	 RL does not require massive amounts of representative sampled 
historical data.

3.	 RL approaches easily integrate with existing ecological models 
and simulations, which may be our best guide to understanding 
and predicting future possibilities.

Despite relevance to decision making under uncertainty that 
could make RL uniquely well suited for ecological control, RL has 
only been applied to this field in a few cases (Fonnesbeck, 2008; 
Silvestro et al., 2022; Treloar et al., 2020; Xu et al., 2021). To date, 
the problems considered by RL research have largely been drawn 
from examples in robotic movement and games like Go and Starcraft 
(OpenAI et al., 2018; Silver et al., 2018; Vinyals et al., 2019). Complex 
environmental problems share many similarities to these tasks and 
games: the need to plan many moves ahead given a large number 
of possible outcomes, to account for uncertainty and to respond 
with contingency to the unexpected. RL agents typically develop 
strategies by interacting with simulators, a practice that should not 
be unsettling to ecologists, since learning from simulators is com-
mon across ecology. Rich, processes-based simulations such as the 
SORTIE model in forest management (Pacala et al., 1996), Ecopath 
with Ecosim in fisheries management (Steenbeek et al.,  2016) or 
climate change policy models (Nordhaus, 1992) are already used to 
explore scenarios and inform ecosystem management. Decision-
theoretic approaches based on optimal control techniques can only 
find the best strategy in the simplest of ecological models; the so 
called “curse of dimensionality” makes problems with a large number 
of states or actions intractable by conventional methods (Chades 
et al.,  2021; Ferrer-Mestres et al.,  2021; Marescot et al.,  2013; 
Wilson et al.,  2006). Neural-network-based RL techniques, re-
ferred to as deep RL, have proven particularly effective in problems 

involving complex, high-dimensional spaces that have previously 
proven intractable to classical methods.

While deep RL may have the potential to open up such intrac-
table problems, it also risks making those problems tractable only 
for stakeholders with access to extensive computational resources 
and expertise. It is notable that the landmark advances cited above 
have been solved not by academic teams but by specialized research 
teams of international technology firms such as Alphabet. Precise 
estimates of computational resources used in that research are 
difficult to establish, but previous estimates benchmarked against 
commercially available cloud computing platforms place the training 
of a single model at over $35 million (Hernandez & Brown, 2020; 
Huang, 2018; Silver et al., 2017), and many realistic ecological prob-
lems will involve even greater complexity than these landmark ex-
amples (OpenAI et al.,  2018; Silver et al.,  2017, 2018). While the 
history of improved efficiency in computing technology has shown 
a remarkable ability to reduce such barriers, it has simultaneously 
moved the leading edge of those capabilities farther beyond the 
reach of traditional ecological research. We believe that ecologists 
must seek to better understand the design, capabilities and limita-
tions of these algorithms while keeping in mind that the application 
of RL to conservation will surely require the ambitious collaboration, 
resources and expertise on par with the scale of the immense envi-
ronmental and ecological problems we face.

In this paper, we draw on examples from fisheries management 
and ecological tipping points to illustrate how deep RL techniques 
can successfully discover optimal solutions to previously solved 
management scenarios and discover highly effective solutions to 
unsolved problems. We focus on examining the potential and lim-
itations of deep RL through the lens of simple, classical models. 
Over a century of theory and practice in ecology has demonstrated 
that simple models can provide meaningful insights, which improve 
management outcomes (Getz et al., 2018). As Richard Levins suc-
cessfully established in his classic paper on the principles of model 
building (Levins, 1966), model complexity must not be mistaken for 
model realism. Levins espoused simple mechanistic models that 
satisfy the goals of being both realistic and general. More complex 
models such as those used in fisheries to guide the management of 
specific stocks typically sacrifice generality for precision. Such sim-
ple, realistic and general models are still the bedrock of most theory 
and practice today (for instance, the notion of maximum sustainable 
yield, MSY, in fisheries, or R0 in epidemiology, remain important con-
cepts in management). These models provide an ideal first bench-
mark for evaluating the performance of emerging methods of deep 
RL for several reasons: Firstly, for some cases, the optimal solution 
is already known, providing a clear standard-of-comparison to eval-
uate RL performance. Prior work sometimes overlooks this essen-
tial step, assuming that whatever behaviour an RL agent produces 
is sufficiently optimal (Mnih et al.,  2015). As our evaluations will 
illustrate, such an assumption can be quickly misleading. Second, 
these models are already widely studied and will be familiar to many 
readers: Schaefer (1954) is a staple of fisheries management text-
books and practice, with over 2800 citations, while May (1977) has 
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become a canonical model of thresholds and tipping points, which 
still continues to dominate how many ecologists think about these 
phenomena (Scheffer et al.,  2015). Many readers can thus bene-
fit from existing knowledge and intuition about the behaviour and 
implications of these models in interpreting the performance of 
deep RL, something that would not be possible with a more com-
plex model. Third, these models include or can easily be extended 
to contexts for which the optimal management policy is unknown 
or inaccessible to classical methods. Our implementations of these 
models have been published to the python-based PyPi code archive 
and include many such variations that represent open problems 
for RL. We include extensive appendices with carefully annotated 
code, which should allow readers to both reproduce and extend this 
analysis.

This paper does not intend to validate deep RL as a method that 
should be used to directly inform decision-making on current con-
servation problems. Rather, we seek to provide ecologists with a 
greater understanding of both potentials and pitfalls of this emerging 
approach. We have selected familiar example problems to provide 
ecologists with a greater background and intuition to understand 
these techniques and engage in the collaborative development of 
deep RL-based methods, while also highlighting challenges that 
ecological problems pose to existing techniques. Validating deep 
RL for current conservation problems is beyond the scope of any 
one paper: this will necessitate examining a range of more “precise” 

models, which will require more computational resources than that 
available to most researchers and extensive collaboration between 
large teams of ecologists and computer scientists.

2  |  MATERIAL S AND METHODS

All applications of RL can be divided into two components: an 
environment and an agent. The environment is typically a computer 
simulation, though it is possible to use the real world as the RL 
environment (Ha et al., 2020). The agent, which is often a computer 
program, continuously interacts with the environment. At each time 
step, the agent observes the current state of the environment and 
then performs an action.1 As a result of this action, the environment 
transitions to a new state and transmits a numerical reward signal 
to the agent (Figure 1). The goal of the agent is to learn how to 
maximize its expected cumulative reward. The agent learns how to 
achieve this objective during a period called training. In training, the 
agent explores the available actions. Once the agent comes across a 
highly rewarding sequence of observations and actions, the agent 
will reinforce this behaviour so that it is more likely for the agent to 
exploit the same high reward trajectory in the future. Throughout 
this process, the agent's behaviour is codified into what is called a 
policy, which describes what action an agent should take for a given 
observation.

F I G U R E  1  Deep reinforcement learning: A deep RL agent uses a neural network to select an action in response to an observation of the 
environment, and receives a reward from the environment as a result. During training, the agent tries to maximize its cumulative reward by 
interacting with the environment and learning from experience. In the RL loop, the agent performs an action, then the environment returns 
a reward and an observation of the environment's state. The agent-environment loop continues until the environment reaches a terminal 
state, after which the environment will reset, causing a new episode to begin. Across training episodes, the agent will continually update 
the parameters in its neural network, so that the agent will select better actions. Before training starts, the researcher must input a set of 
hyperparameters to the agent; hyperparameters direct the learning process and thus affect the outcome of training. A researcher finds the 
best set of hyperparameters during tuning. Hyperparameter tuning consists of iterative trials, in which the agent is trained with different 
sets of hyperparameters. At the end of a trial, the agent is evaluated to see which set of hyperparameters results in the highest cumulative 
reward. An agent is evaluated by recording the cumulative reward over one episode, or the mean reward over multiple episodes. Within 
evaluation, the agent does not update its neural network; instead, the agent uses a trained neural network to select actions
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2.1  |  RL environments

An environment is a mathematical function, computer program 
or real world experience that takes an agent's proposed action as 
input and returns an observation of the environment's current 
state and an associated reward as output. In contrast to classical 
approaches (Chades et al., 2021; Marescot et al.,  2013), there are 
few restrictions on what comprises a state or action. States and 
actions may be continuous or discrete, completely or partially 
observed, and single or multidimensional. The main focus of building 
an RL environment, however, is on the environment's transition 
dynamics and reward function. The designer of the environment can 
make the environment follow any transition and reward function 
provided that both are functions of the current state and action. 
The ability to tailor the actions, states, transition dynamics and 
reward function allows RL environments to model a broad range of 
decision making problems. For example, we can set the transitions 
to be deterministic or stochastic. We could map any countable 
set of actions to a discrete action space. We can also specify the 
reward function to be sparse, whereby a positive reward can only 
be received after a long sequence of actions, for example, the end 
point in a maze. In other environments, an agent may have to learn to 
forgo immediate rewards (or even accept an initial negative reward) 
in order to maximize the net discounted reward as we illustrate in 
examples here.

The OpenAI gym software framework was created to address 
the lack of standardization of RL environments and the need for 
better benchmark environments to advance RL research (Brockman 
et al., 2016). The gym framework defines a standard interface and 
methods by which a developer can describe an arbitrary environ-
ment in a computer program. This interface allows for the application 
of software agents that can interact and learn in that environment 
without knowing anything about the environment's internal details. 
Using the gym framework, we turn existing ecological models into 
valid environmental simulators that can be used with any RL agent. 
In Appendix C, we give detailed instruction on how an OpenAI gym 
is constructed.

2.2  |  Deep RL agents

To optimize the RL objective, agents either take a model-free or 
model-based approach. The distinction is that model-free algorithms 
do not attempt to learn or use a predictive model of the environment; 
yet, model-based algorithms employ a predictive model of the 
environment to achieve the RL objective. A trade-off between these 
approaches is that when it is possible to quickly learn a model of the 
environment or the model is already known, model-based algorithms 
tend to require much less interaction with the environment to learn 
good-performing policies (Janner et al., 2019; Sutton & Barto, 2018). 
Yet, frequently, learning a model of the environment is very difficult, 
and in these cases, model-free algorithms tend to outperform 
(Janner et al., 2019).

Neural networks become useful in RL when the environment has 
a large observation-action space,2 which happens frequently with 
realistic decision-making problems. Whenever there is a need for 
an agent to approximate some function, typically a function to rep-
resent the policy and/or to model the transition dynamics, neural 
networks can be used in this capacity due to their property of being 
general function approximators (Hornik et al., 1989). Although there 
are other function approximators that can be used in RL, for example 
Gaussian processes (Grande et al., 2014), neural networks have ex-
celled in this role because of their ability to learn complex, nonlinear 
and high dimensional functions and their ability to adapt given new 
information (Arulkumaran et al., 2017). There is a multitude of deep 
RL algorithms since there are many design choices that can be made 
in constructing a deep RL agent—see Appendix A for more detail on 
these engineering decisions. In Table 1, we present some of the more 
common deep RL algorithms, which serve as good reference points 
for the current state of deep RL.

Training a deep RL agent involves allowing the agent to interact 
with the environment for potentially thousands to millions of time 
steps. During training, the deep RL agent continually updates its neu-
ral network parameters so that it will converge to an optimal policy. 
The amount of time needed for an agent to learn high reward yielding 
behaviour cannot be predetermined and depends on a host of factors 
including the complexity of the environment, the complexity of the 
agent, and more. Yet, overall, it has been well established that deep 
RL agents tend to be very sample inefficient (Gu et al., 2017), so it is 
recommended to provide a generous training budget for these agents.

The deep RL agent controls the learning process with parameters 
called hyperparameters. Examples of hyperparameters include the 
step size used for gradient ascent and the interval to interact with the 
environment before updating the policy. In contrast, a weight or bias 
in an agent's neural network is simply called a parameter. Parameters 
are learned by the agent, but the hyperparameters must be specified 
by the RL practitioner. Since the optimal hyperparameters vary across 
environments and cannot be predetermined (Henderson et al., 2019), 
it is necessary to find a good-performing set of hyperparameters in 
a process called hyperparameter tuning, which uses standard multi-
dimensional optimization methods. We further discuss and show the 
benefits of hyperparameter tuning in Appendix B.

2.3  |  RL objective

The reinforcement learning environment is typically formalized 
as a discrete-time partially observable Markov decision process 
(POMDP). A POMDP is a tuple that consists of the following:

• : a set of states called the state space
• : a set of actions called the action space
• Ω: a set of observations called the observation space
• E

(
ot| st

)
: an emission distribution, which accounts for an agent's 

observation being different from the environment's state
• T

(
st+1| st , at

)
: a state transition operator which describes the 

dynamics of the system
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• r
(
st , at

)
: a reward function

• d0
(
s0
)
: an initial state distribution

• � ∈ (0, 1
]
: a discount factor that describes how much the agent 

will value rewards to be received in the distant future versus the 
immediate future (Clark, 2010)

The agent interacts with the environment in an iterative loop, 
whereby the agent only has access to the observation space, the 
action space and the discounted reward signal, � t r

(
st , at

)
. As the 

agent interacts with the environment by selecting actions ac-
cording to its policy, �

(
at| ot

)
,3 the agent creates a trajectory, 

� =
(
s0, o0, a0, … , sH−1, oH−1, aH−1, sH

)
. From these definitions, we can 

provide an agent's trajectory distribution for a given policy as,

The goal of reinforcement learning is for the agent to find an optimal 
policy distribution, �∗

(
at| ot

)
, that maximizes the expected return, J(�):

Although there are RL-based methods for infinite horizon problems, 
that is, when H = ∞, we will only present episodic or finite horizon 
POMDPs in this study. In Appendix A, we will discuss in greater de-
tail how deep RL algorithms attempt to optimize the RL objective.

3  |  RESULTS

We provide two examples that illustrate the application and poten-
tial of deep RL to ecological and conservation problems, highlighting 

both the potential and the inherent challenges. Annotated code for 
these examples may be found in Appendix B and at https://github.
com/boett​iger-lab/rl-intro. All algorithms were run on an NVIDIA 
Quadro RTX 8000 GPU. The training budget for the fishing scenario 
was 300 K timesteps (3  K runs, taking about 25  min). The train-
ing budget for the tipping point example was 3  M timesteps (6  K 
runs, taking around 3 hr). Software details and hyperparameters 
are provided in the associated GitHub repo. Hyperparameter tun-
ing typically required 100 s of training runs using both Optuna, a 
python-based hyperparameter optimization module, and manual 
adjustments.

3.1  |  Sustainable harvest sustainable harvest

The first example focuses on the important but well-studied prob-
lem of setting harvest quotas in fisheries management. This provides 
a natural benchmark for deep RL approaches, since we can compare 
the RL solution to the mathematical optimum directly. Determining 
fishing quotas is both a critical ecological issue (Costello et al., 2016; 
Worm et al., 2006, 2009) and a textbook example that has long in-
formed the management of renewable resources within fisheries 
and beyond (Clark, 1990).

Given a population growth model that predicts the total bio-
mass of a fish stock in the following year as a function of the 
current biomass, it is straightforward to determine what biomass 
corresponds to the maximum growth rate of the stock, or BMSY, 
the biomass at maximum sustainable yield (MSY; Schaefer, 1954). 
When the population growth rate is stochastic, the problem is 
slightly harder to solve, as the harvest quota must constantly 
adjust to the ups and downs of stochastic growth, but it is still 
possible to show the optimal strategy merely seeks to maintain 

p�(�) = d0
(
s0
) H−1∏

t=0

�
(
at| ot

)
E
(
ot| st

)
T
(
st+1| st , at

)
.

�∗ = argmax
�

��∼p� (�)

[
H−1∑

t=0

� tr
(
st , at

)
]
= argmax

�
J(�).

Abbreviation Algorithm name Model

PlaNet Deep Planning Network (Hafner et al., 2019) Model-based

I2A Imagination-Augmented Agents (Weber 
et al., 2017)

Model-based

MBPO Model-based Policy Optimization (Janner 
et al., 2019)

Model-based

DQN Deep Q Networks (Mnih et al., 2015) Model-free

A2C Advantage Actor Critic (Mnih et al., 2016) Model-free

A3C Asynchronous A2C (Babaeizadeh et al., 2016) Model-free

TRPO Trust Region Policy Optimization (Schulman, 
Levine, et al., 2017)

Model-free

PPO Proximal Policy Optimization (Schulman, Wolski, 
et al., 2017)

Model-free

DDPG Deep Deterministic Policy Gradient (Lillicrap 
et al., 2019)

Model-free

TD3 Twin Delayed DDPG (Fujimoto et al., 2018) Model-free

SAC Soft Actor Critic (Haarnoja et al., 2018) Model-free

IMPALA Importance Weighted Actor Learner (Espeholt 
et al., 2018)

Model-free

TA B L E  1  Survey of common deep RL 
algorithms
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the stock at BMSY, adjusted for any discounting of future yields 
(Reed, 1979).

For illustrative purposes, we consider the simplest version of the 
dynamic optimal harvest problem as outlined by Clark (1973) (for the 
deterministic case) and Reed (1979) (under stochastic recruitment). 
The manager seeks to optimize the net present value (discounted 
cumulative catch) of a fishery, observing the stock size each year 
and setting an appropriate harvest quota in response. In the classical 
approach, the best model of the fish population dynamics must first 
be estimated from data, potentially with posterior distributions over 
parameter estimates reflecting any uncertainty. From this model, the 
optimal harvest policy—that is, the function which returns the opti-
mal quota for each possible observed stock size—can be determined 
either by analytic (Reed, 1979) or numerical (Marescot et al., 2013) 
methods, depending on the complexity of the model. In contrast, a 
model-free deep RL algorithm makes no assumption about the pre-
cise functional form or parameter values underlying the dynamics—it 
is in principle agnostic to the details of the simulation.

We illustrate the deep RL approach using the model-free algo-
rithm known as Twin Delayed Deep Deterministic Policy Gradient or 
more simply, TD3 (Fujimoto et al., 2018). A step-by-step walk-through 
for training agents on this environment is provided in the Appendix. 
We compare the resulting management, policy and reward under 
the RL agent to that achieved by the optimal management solution 
(Figure  2). Despite having no knowledge of the underlying model, 
the RL agent learns enough to achieve nearly optimal performance.

The cumulative reward (utility) realized across 100 stochastic rep-
licates is indistinguishable from that of the optimal policy (Figure 2). 
Nevertheless, comparing the mean state over replicate simulations 
reveals some differences in the RL strategy, wherein the stock is 
maintained at a slightly higher-than-optimal biomass. Because our 
state space and action space are sufficiently low-dimensional in this 

example, we are also able to visualize the policy function directly, and 
compare to the optimal policy (Figure 2). This confirms that quotas 
tend to be slightly lower than optimal, most notably at larger stock 
sizes. These features highlight a common challenge in the design and 
training of RL algorithms. RL cares only about improving the realized 
cumulative reward, and may sometimes achieve this in unexpected 
ways. Because these simulations rarely reach stock sizes at or above 
carrying capacity, that is, larger stock sizes are under-explored, these 
larger stock sizes show a greater deviation from the optimal policy 
than we observe at more frequently visited lower stock sizes. This 
observation brings up a point that is well worth discussing, which is 
how to best identify and resolve underexplored scenarios. Usually, 
RL practitioners identify underexplored scenarios by either doing 
extensive testing or visualizing the policy, then tweaking the hyper-
parameters relevant to exploration in hopes of improving the result.

How could an RL agent be applied to empirical data? One 
solution would be to train an agent on a simulation environment 
that approximates the fishery of interest then query the policy 
of the agent to find a quota for the observed stock. To illustrate 
this, we examine the quota that would be recommended by our 
newly trained RL agent, above, against historical harvest levels 
of Argentine hake based on stock assessments from 1986–2014 
(RAM Legacy Stock Assessment Database, 2020, see Appendix D). 
Hake stocks showed a marked decline throughout this period, 
while harvests decreased only in proportion (Figure  3). In con-
trast, our RL agent would have recommended significantly lower 
quotas over most of the same interval, including the closure of 
the fishery as stocks were sufficiently depleted—a stark contrast 
to the management policy evidenced in the historical catch. Note 
that we have no way of knowing for sure if the RL quotas would 
have led to recovery nor do we know the optimal harvest rates, 
because we can never know the “true model” of the Argentine 

F I G U R E  2  Fisheries management using neural network agents trained with RL algorithm TD3 compared to optimal management. Top 
panel: Mean fish population size over time across 100 replicates. Shaded region shows the 95% confidence interval over simulations. Lower 
left: The optimal solution is the policy of constant escapement. Below the target escapement of 0.5, no harvest occurs, while any stock 
above that level is immediately harvested back down. The TD3 agent adopts a policy that ceases any harvest below this level, while allowing 
a somewhat higher escapement than optimal. Lower right: TD3 achieves a nearly-optimal mean utility.
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hake dynamics. We can confirm that the fishery closures seen in 
the RL agent's solution are considered optimal under the assump-
tions of constant escapement theory (Reed, 1979) whenever the 
stock is below the biomass of maximum sustainable yield (BMSY), 
and that most fisheries models of this stock (RAM Legacy Stock 
Assessment Database, 2020) would suggest that the populations 
observed in the latter two decades of the data are below that 
threshold.

This approach is not as different from conventional strategies as 
it may seem. In a conventional approach, ecological models are first 
estimated from empirical data, (stock assessments in the fisheries 
case). Quotas can then be set based directly on these model esti-
mates, or by comparing alternative candidate “harvest control rules” 
(policies) against model-based simulations of stock dynamics. This 
latter approach, known in fisheries as management strategy evalu-
ation (MSE; Punt et al., 2016) is already closely analogous to the RL 
process. Instead of researchers evaluating a handful of control rules, 
the RL agent proposes and evaluates a plethora of possible control 
rules autonomously.

3.2  |  Ecological tipping points

Our second example focuses on a case for which we do not have 
an existing, provably optimal policy to compare against. We con-
sider the generic problem of an ecosystem facing slowly dete-
riorating environmental conditions, which move the dynamics 
closer towards a tipping point (Figure 4). This model of a critical 
transition has been posited widely in ecological systems, from the 
simple consumer-resource model of May, 1977 on which our dy-
namics are based, to microbial dynamics (Dai et al.,  2012), lake 
ecosystem communities (Carpenter et al.,  2011) and planetary 
ecosystems (Barnosky et al., 2012). On top of these ecological dy-
namics, we introduce an explicit ecosystem service model quanti-
fying the value of a more desirable ‘high’ state relative to the ‘low’ 
state. For simplicity, we assume a proportional benefit b associ-
ated with the ecosystem state X(t). Thus, when the ecosystem is 

near the ‘high’ equilibrium, X̂H, the corresponding ecosystem ben-
efit, bX̂H, is higher than at the low equilibrium, bxL, consistent with 
the intuitive description of ecosystem tipping points (Barnosky 
et al., 2012).

We also enumerate the possible actions that a manager may take 
in response to environmental degradation. In the absence of any 
management response, we assume the environment deteriorates at 
a fixed rate �, which can be thought of as the incremental increase 
in global mean temperature or similar anthropogenic forcing term. 
Management can slow or even reverse this trend by choosing an op-
posing action At. We assume that large actions are proportionally 
more costly than small actions, consistent with the expectation of 
diminishing returns: taking the cost associated with an action At as 
equal to cA2

t
. Many alterations of these basic assumptions are also 

possible: our gym_conservation implements a range of different 
scenarios with user-configurable settings. In each case, the manager 
observes the current state of the system each year and must then 
select the policy response that year.

Because this problem involves a parameter whose value changes 
over time (the slowly deteriorating environment), the resulting eco-
system dynamics are not autonomous. This precludes our ability to 
solve for the optimal management policy using classical theory such 
as for Markov decision processes (MDP, Marescot et al., 2013), typ-
ically used to solve sequential decision-making problems. However, 
it is often argued that simple rules can achieve nearly optimal man-
agement of ecological conservation objectives in many cases (Joseph 
et al., 2009; Meir et al., 2004; Wilson et al., 2006). A common conser-
vation strategy employs a fixed response level rather than a dynamic 
policy which is toggled up or down each year: for example, declaring 
certain regions as protected areas in perpetuity. An intuitive strategy 
faced with an ecosystem tipping point would be ‘perfect conserva-
tion’, in which the management response is perfectly calibrated to 
counter-balance any further decline. While the precise rate of such 
decline may not be known in practice (and will not be known to RL 
algorithms before-hand either), it is easy to implement such a policy in 
simulation for comparative purposes. We compare this rule-of-thumb 
to a policy found by training an agent using the TD3 algorithm.

F I G U R E  3  Setting fisheries harvest 
quotas using deep RL. Argentine hake 
fish stocks show a marked decline 
between 1986 and 2014 (upper panel). 
Historical harvests (lower panel) declined 
only slowly in response to consistently 
falling stocks, suggesting overfishing. 
In contrast, RL-based quotas would 
have been set considerably lower than 
observed harvests in each year of the 
data. As decline persists, the RL-based 
management would have closed the 
fishery to future harvest until the stock 
recovered.
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The TD3-trained agent proves far more successful in preventing 
chance transitions across the tipping point, consistently achieving 
a higher cumulative ecosystem service value across replicates than 
the steady-state strategy.

Examining the replicate management trajectories and corre-
sponding rewards (Figure 5) reveal that the RL agent incurs signifi-
cantly higher costs in the initial phases of the simulation, dipping 
well below the mean steady-state reward initially before exceeding 

it in the long run. This initial investment then begins to pay off—by 
about the 200th time step, the RL agent has surpassed the perfor-
mance of the steady-state strategy. The policy plot provides more 
intuition for the RL agent's strategy: at very high state values, the RL 
agent opts for no conservation action—so far from the tipping point, 
no response is required. Near the tipping point, the RL agent steeply 
ramps up the conservation effort, and retains this effort even as 
the system falls below the critical threshold, where a sufficiently 

F I G U R E  4  Bifurcation diagram for tipping point scenario. The ecosystem begins in the desirable ‘high’ state under an environmental 
parameter (e.g. global mean temperature, arbitrary units) of 0.19. In the absence of conservation action, the environment worsens (e.g. rising 
mean temperature) as the parameter increases. This results in only a slow degradation of the stable state, until the parameter crosses the 
tipping point threshold at about 0.215, where the upper stable branch is annihilated in a fold bifurcation and the system rapidly transitions 
to lower stable branch, around state of 0.1. Recovery to the upper branch requires a much greater conservation investment, reducing the 
parameter all the way to 0.165 where the reverse bifurcation will carry it back to the upper stable branch
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F I G U R E  5  Ecosystem dynamics under management using the steady-state rule-of-thumb strategy compared to management using a 
neural network trained using the TD3 RL algorithm. Top panel: Mean and 95% confidence interval of ecosystem state over 100 replicate 
simulations. As more replicates cross the tipping point threshold under steady-state strategy, the mean slowly decreases, while the TD3 
agent preserves most replicates safely above the tipping point. Lower left: The policy function learned using TD3 relative to the policy 
function under the steady state. Lower right: Mean rewards under TD3 management eventually exceed those expected under the steady-
state strategy as a large initial investment in conservation eventually pays off.
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aggressive response can tip the system back into recovery. For 
a system at or very close to the zero-state, the RL agent gives up, 
opting for no action. Recall that the quadratic scaling of cost makes 
the rapid response of the TD3 agent much more costly to achieve 
the same net environmental improvement divided into smaller incre-
ments over a longer timeline. However, our RL agent has discovered 
that the extra investment for a rapid response is well justified as the 
risk of crossing a tipping point increases.

A close examination of the trajectories of individual simulations 
which cross the tipping point under either management strategy (see 
Appendix  B) further highlights the difference between these two 
approaches. Under the steady-state strategy, the system remains 
poised too close to the tipping point: stochastic noise eventually 
drives most replicates across the threshold, where the steady-
state strategy is too weak to bring them back once they collapse. 
As replicate after replicate stochastically crashes, the mean state 
and mean reward bend increasingly downwards. In contrast, the RL 
agent edges the system slightly farther away from the tipping point, 
decreasing but not eliminating the odds of a chance transition. In 
the few replicates that experience a critical transition anyway, the 
RL agent usually responds with sufficient commitment to ensure 
their recovery (Appendix B). Only 3 out of 100 replicates degrade 
far enough for the RL agent to give up the high cost of trying to 
rescue them. The RL agent's use of a more dynamic strategy out-
performs the steady-state strategy. Numerous kinks visible in the 
RL policy function also suggest that this solution is not yet optimal. 
Such quirks are likely to be common features of RL solutions—long 
as they have minimal impact on realized rewards. Further tuning of 
hyper-parameters, increased training, alterations or alternatives to 
the training algorithm would likely be able to further improve upon 
this performance.

3.3  |  Additional environments

Ecology holds many open problems for deep RL. To extend the ex-
amples presented here to reflect greater biological complexity or 
more realistic decision scenarios, the transition, emission and/or 
reward functions of the environment can be modified. We provide 
an initial library of example environments at https://boett​iger-lab.
github.io/conse​rvati​on-gym. Some environments in this library in-
clude a wildfire gym that poses the problem of wildfire suppression 
with a cellular automata model, an epidemic gym that examines tim-
ing of interventions to curb disease spread, as well as more complex 
variations of the fishing and conservation environments presented 
above.

4  |  DISCUSSION

Ecological challenges facing the planet today are complex, and 
their outcomes are both uncertain and consequential. Even our 
best models and best research will never provide a crystal ball to 

the future, only better elucidate possible scenarios. Consequently, 
that research must also confront the challenge of making robust, 
resilient decisions in a changing world. The science of ecological 
management and quantitative decision-making has a long history 
(e.g. Schaefer, 1954; Walters & Hilborn, 1978) and remains an active 
area of research (Fischer et al., 2009; Polasky et al., 2011; Wilson 
et al.,  2006). However, the limitations of classical methods such 
as optimal control frequently constrain applications to relatively 
simplified models (Wilson et al.,  2006), ignoring elements such as 
spatial or temporal heterogeneity and autocorrelation, stochasticity, 
imperfect observations, age or state structure, and other sources 
of complexity that are both pervasive and influential on ecological 
dynamics (Hastings & Gross,  2012). Complexity comes not only 
from the ecological processes but also the available actions. Deep 
RL agents have proven remarkably effective in handling such 
complexity, particularly when leveraging immense computing 
resources increasingly available through advances in hardware and 
software (Matthews, 2018).

This paper does not set the precedent as the first application 
of RL to ecology. There have been a number of studies applying 
RL to behavioural ecology, typically with multiagent environments 
(Frankenhuis et al., 2019; Perolat et al., 2017; Wang et al., 2020). Yet, 
it is important to distinguish the aim of these behavioural studies 
from the aim of applying RL to conservation management. In pre-
vious behavioural ecology studies, RL algorithms as a substitute for 
animal learning mechanisms (Perolat et al., 2017; Wang et al., 2020). 
When applying deep RL to conservation management, we do not 
make the assumption that an RL algorithm learns analogously to how 
an animal learns. We instead propose that RL be used as a tool to 
search for solutions to decision-making problems.

The examples presented here only scrape the surface of possible 
RL applications to conservation problems. The examples we have 
focused on are intentionally quite simple, though it is worth re-
membering that these very same simple models have a long history 
of relevance and application in both research and policy contexts. 
Despite their simplicity, the optimal strategy is not always obvious 
beforehand, however intuitive it may appear in retrospect. In the 
case of the ecosystem tipping point scenario, the optimal strategy 
is unknown, and the approximate solution found by our RL imple-
mentation could almost certainly be improved upon. In these simple 
examples in which the simulation implements a single model, train-
ing is analogous to classical methods that take the model as given 
(Marescot et al., 2013). But classical approaches can be difficult to 
generalize when the underlying model is unknown. In contrast, the 
process of training an RL algorithm on a more complex problem is 
no different than training on a simple one: we only need access to 
a simulation which can generate plausible future states in response 
to possible actions. This flexibility of RL could allow us to attain bet-
ter decision-making insight for our most realistic ecological models 
like those used for the management of forests and wildfire (Moritz 
et al., 2014; Pacala et al., 1996), disease (Dobson et al., 2020), ma-
rine ecosystems (Steenbeek et al., 2016), or global climate change 
(Nordhaus, 1992).
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The rapidly expanding class of model-free RL algorithms is par-
ticularly appealing given the ubiquitous presence of model uncer-
tainty in ecological dynamics. Rarely do we know the underlying 
functional forms for ecological processes. Methods which must first 
assume something about the structure or functional form of a pro-
cess before estimating the corresponding parameter can only ever 
be as good as those structural assumptions. Frequently, available 
ecological data are insufficient to distinguish between possible al-
ternative models (Knape & de Valpine, 2012), or the correct model 
may be nonidentifiable with any amount of data. Model-free RL 
approaches offer a powerful solution for this thorny issue. Model-
free algorithms have proven successful at learning effective policies 
even when the underlying model is difficult or impossible to learn 
(Pong et al.,  2020), as long as simulations of possible mechanisms 
are available.

Successfully applying RL to complex ecological problems is no 
easy task. Even on relatively uncomplicated environments, training 
an RL agent can be more challenging than expected due to an en-
tanglement of reasons, see Table 2, like hyperparameter instability 
and poor exploration that can be very difficult to resolve (Berger-Tal 
et al., 2014; Henderson et al., 2019). It is also worth acknowledging 
that deep RL algorithms, particularly model-free algorithms, have 
poor sample efficiency, which could limit deep RL from being effec-
tive on environments that are slow to run (Haarnoja et al.,  2018). 
Thus, as Sections 5.1 and 5.2 illustrate, it is important to begin with 
simple problems, including those for which an optimal strategy is 
already known. Such examples provide important benchmarks to 
calibrate the performance, tuning and training requirements of RL. 
Once RL agents have mastered the basics, the examples can be eas-
ily extended into more complex problems by changing the environ-
ment. Yet, even in the case that an agent performs well on a realistic 
problem, there will be a range of open questions in using deep RL to 
inform decision-making. Since deep neural networks lack transpar-
ency (Castelvecchi, 2016), can we be confident that the agent will 
generalize its past experience to new situations—especially when we 
cannot readily visualize the policy? To gain such confidence, it will 
be necessary to do extensive testing on previously unseen contexts 

(Kazak et al., 2019), but even then, it can be difficult to verify that 
the agent will perform as expected. Given that there have been 
many examples of reward misspecification leading to undesirable 
behaviour (Hadfield-Menell et al., 2020), what if we have selected 
an objective that unexpectedly causes damaging behaviour? Reward 
misspecification is not unique to RL and has long been a central 
problem in ecological management and decision-making (Conroy & 
Peterson, 2013; Gregory et al., 2012), but it is important to make 
clear that RL does not resolve this issue. A greater role of algorithms 
in conservation decision-making also raises questions about ethics 
and power, particularly when those algorithms are opaque or propri-
etary (Chapman et al., 2021; Scoville et al., 2021).

Yet, a more immediate barrier to the use of deep RL in conserva-
tion is deep RL's hardware requirements. Depending on the complexity 
of the RL environment and agent, the equipment necessary to train 
an agent can vary widely. The examples shown above were selected 
so they can be replicated on a personal computer, but more realistic 
problems will likely require specialized computational resources. For 
instance, one of the most notable achievements in RL, Alphastar, re-
quired 33 TPUs, processors that are specialized for deep learning, for 
more than 40 days (Vinyals et al.,  2019). Fully detailed conservation 
decision-making problems will likely require comparable specialized al-
gorithms and hardware that ecologists do not generally have access to. 
For deep RL to be an effective tool for conservation, there will need to 
be large investments of time and money, and extensive collaboration 
across computer science and ecology.

Deep RL is still a very young field, where despite several land-
mark successes, potential far outstrips practice. Recent advances in 
the field have proven the potential of the approach to solve com-
plex problems (Mnih et al., 2015; Silver et al., 2016, 2017, 2018), but 
typically leveraging large teams with decades of experience in ML 
and millions of dollars worth of computing power (Silver et al., 2017). 
Successes have so far been concentrated in applications to games 
and robotics, not scientific and policy domains, though this is begin-
ning to change (Popova et al., 2018; Zhou et al., 2017). Iterative im-
provements to well-posed public challenges have proven immensely 
effective in the computer science community in tackling difficult 

TA B L E  2  Practical issues with deep RL

Issue Description

Generalization Agents struggle to adapt to tasks not seen in training (Kirk et al., 2022).

Reproducibility It can be very challenging to replicate results due to a host of reasons like differences in 
computational hardware (Henderson et al., 2019)

Lack of transparency Deep RL users cannot interpret why agents select actions (Castelvecchi, 2016)

Hyperparameter instability Agent performance can vary significantly over slight alterations in hyperparameters, like 
initialization seed (Henderson et al., 2019)

Reward misspecification Agents commonly learn undesirable behaviour that still maximizes the RL objective (Hadfield-
Menell et al., 2020)

High capital demands Landmark successes like AlphaGo and AlphaStar have required very large teams of researchers 
and large amounts of computational power (Silver et al., 2017; Vinyals et al., 2019)

Sample inefficiency Current algorithms require large amounts of interaction with the environment to achieve 
reward maximization (Haarnoja et al., 2018)
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problems, which allow many teams with diverse expertise not only 
to compete but to learn from each other (Deng et al., 2009; Villarroel 
et al., 2013). By working to develop similarly well-posed challenges 
as clear benchmarks, ecology and environmental science research-
ers may be able to replicate that collaborative, iterative success in 
cracking hard problems.
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ENDNOTE S
	1	 The terms observation and state are used nearly interchangeably in 

describing RL, so it is worth clarifying the distinction. An observa-
tion is the depiction of the environment that is given to the agent 
at each time step, but the state is the true underlying description of 
the environment. When the term observation is used, this usually 
means that the observation does not provide an accurate portrayal 
of the environment's state. Yet, in cases when the observation and 
state are in agreement, the term observation is typically not used at 
all.

	2	 Conventionally, an observation-action space is considered to be large 
when it is non-tabular, that is, it cannot be represented in a computa-
tionally tractable table.

	3	 The policy can also be conditioned on a history of observations,  
(o0, …, ot).
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